|
Жизнь и генетический механизм
Живые системы отличаются от неживых двумя важными особенностями. Прежде всего, даже самый простой организм по своему составу и строению гораздо сложнее любого сравнимого с ним по размеру объекта неживой природы. Мы до сих пор еще не знаем полностью, какова структурная организация живой клетки, ибо обнаруживаются все новые ее компоненты - и конца этому не видно. Следует помнить, что при этом не принимается во внимание сложность организации многоклеточных организмов, где огромные популяции клеток, специализированных на выполнении определенных функций, должны взаимодействовать по согласованной и взаимовыгодной программе. Данное обстоятельство влечет за собой вторую отличительную особенность живых организмов: оказывается, структура и организация клетки, по-видимому, обусловлены ее предназначением, конечной целью которого является выживание организма. В прошлом эти уникальные свойства живых организмов привели к убеждению, что они обладают некой "жизненной силой" - таинственным, нефизическим началом, которым обусловлены особенности, отделяющие живой мир от неживого непроходимой пропастью. Сейчас подобные рассуждения кажутся нелепыми. Мы знаем, что живая материя по своему химическому составу принципиально не отличается от неживой: живые существа состоят из тех же атомов и молекул и ничего более в себе не заключают. Что отличает их от всего остального мира, так это способ, которым их атомы и молекулы соединены друг с другом. Таким образом, жизнь есть проявление определенных комбинаций молекул.
На нашей планете, как известно, основные жизненные процессы обеспечиваются молекулами только двух типов: белками и нуклеиновыми кислотами. Белки образуют ферменты - высокоэффективные катализаторы*, способствующие протеканию в живых системах самых разнообразных химических реакций. Те или иные химические изменения и характеризуют всю жизнедеятельность живых существ; усвоение пищи, образование новых клеток и клеточных компонентов, сокращение мышц и передача нервных импульсов - вот лишь несколько функций, при осуществлении которых происходит химическое превращение молекул одного типа в другой. Эти и множество других специфических реакций, происходящих в организме, "отбираются" и возбуждаются при непосредственном участии ферментов; последние, таким образом, определяют направление и выход конечного продукта всего сложного комплекса процессов, называемого обменом веществ, или метаболизмом, который характерен только для живого организма.
* (Смысл используемых в книге специальных понятий разъясняется в "Словаре терминов")
Живые клетки синтезируют белки, которые обладают и другими функциями. К неферментативным белкам относятся гемоглобин, инсулин, различные антитела. Наиболее распространенным белком, синтезируемым в организме млекопитающих, является коллаген - своего рода строительный материал для костей, кожи или зубов.
Нуклеиновые кислоты выполняют совершенно иную функцию. Они образуют гены - носители всех видов генетической (наследственной) информации. Имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), и обе они обнаружены во всех клетках. Несмотря на большое сходство в их химическом строении, во всех известных нам организмах (за исключением некоторых вирусов) генетическую функцию несет ДНК. Генетическая информация, по-видимому, целиком связана с синтезом белковых молекул: их химическим строением, временем и скоростью синтеза.
Как нуклеиновые кислоты, так и белки образованы очень большими молекулами, состоящими из линейно расположенных маленьких субъединиц - "строительных блоков". У нуклеиновых кислот эти строительные блоки называются нуклеотидами. Четыре различных типа нуклеотидов составляют молекулы ДНК и РНК (их строение показано на рис. 1). Генетическая информация кодируется последовательностью нуклеотидов, так же, как информация, содержащаяся в напечатанной странице, кодируется последовательностью букв. Строительными блоками белков являются аминокислоты. В природе их существует великое множество, но только 20 одни и те же 20 аминокислот во всех известных видах используются при образовании белков, (строение аминокислот показано на рис. 2).
Рис. 1. Четыре нуклеотида ДНК и РНК, объединенные вместе, образуют короткий сегмент нуклеиновой кислоты. Каждый нуклеотид состоит из азотистого основания (их названия и обозначения указаны на рисунке), присоединенного к пятиуглеродному сахару (рибозе у РНК и дезоксирибозе у ДНК), который в свою очередь связан с молекулой фосфорной кислоты. Фосфорная кислота связывает нуклеотиды в цепях нуклеиновых кислот
Рис. 2. 20 белковых аминокислот. Глицин
Аланин
Валин
Лейцин
Изолейцин
Серин
Треонин
Аспарагиновая кислота
Глутаминовая кислота
Лизин
Аргинин
Аспарагин
Глутамин
Цистеин
Метионин
Фенилаланин
Тирозин
Триптофан
Гистидин
Пролин
Важной характеристикой аминокислот является оптическая изомерия. Все они (за исключением самой простой - глицина) могут существовать в двух формах, которые отличаются одна от другой так же, как левая рука отличается от правой, т. е. являются зеркальным отражением друг друга (рис. 3). Два оптических изомера идентичны по своим химическим свойствам, но поскольку их невозможно совместить (перчатку с правой руки нельзя надеть на левую), они не могут заменять друг друга при построении белковых молекул или каких-либо иных трехмерных родственных структур. Интересно, что аминокислоты всех известных белков относятся к левовращающим, L(levo), изомерам. В принципе в каком-то ином живом мире все аминокислоты могли бы быть и правовращающими, или D (dextro), изомерами, и этот мир функционировал бы так же, как и земной. Тот факт, что в нашем мире L-аминокислоты оказались предпочтительнее, чем D, вероятно, следует рассматривать как историческую случайность. На какой-то другой планете, где аминокислоты также играли бы определенную роль в биохимии организмов, с равной вероятностью возможны как L-, так и D-формы.
Рис. 3, Оптическая изомерия возникает в случае, если четыре различных радикала связаны с одним и тем же атомом углерода. Как видно из рисунка, образовавшиеся при этом две трехмерные (пространственные) структуры, зеркальные изображения друг друга (D, dextro и L, levo), не совмещаются. В белковые аминокислоты входят следующие радикалы, связанные с центральным атомом углерода: 1 - СООН; 2 - Н; 3 - NH2; 4 - любой из 20 различных боковых радикалов. Белковые аминокислоты имеют L-конфигурацию за исключением глицина, самой простой аминокислоты, у которой боковым радикалом является Н и зеркальные изображения неразличимы. (Данная схема иллюстрирует лишь возможность пространственного расположения атомных группировок вокруг углерода, а не реальные относительные размеры атомов и радикалов.)
Типичная молекула белка образована одной или несколькими цепочками, называемыми полипептидами, каждая из которых в свою очередь состоит из нескольких сотен соединенных друг с другом аминокислот. Обычно все их 20 типов представлены в каждой такой цепочке (рис. 4). Цепочки свернуты в сложные трехмерные структуры, или конформации, нередко напоминающие спутанный клубок ниток. Особые свойства белковых молекул-как ферментов, так и неферментов - зависят от их конформации. Когда конформация нарушена (в результате процесса, называемого денатурацией), белок перестает функционировать, даже если его аминокислотные цепочки остаются неповрежденными. При соответствующих условиях денатурированные белки могут самопроизвольно ренатурировать - при этом их функции восстанавливаются. Подобное восстановление свидетельствует о том, что трехмерная конфигурация молекулы определяется только последовательностью аминокислот, которая, как известно, кодируется генами.
Рис. 4. Объединенные в цепочки аминокислоты образуют белки. На рисунке показан сегмент, содержащий (слева направо): глицин, аланин, метионин и аспарагин
Правила, которые определяют последовательность аминокислот, просты, но доказательство их существования по праву считается одним из величайших достижений биологии XX в. Говоря кратко, последовательность аминокислот, характеризующая ту или иную полипептидную цепь, определяется отдельным геном, и этот ген не выполняет более никаких других функций. Белок, состоящий из одной цепи (или нескольких, но идентичных по последовательности), кодируется единственным геном; белок, состоящий из двух цепей, отличающихся по структуре, кодируется двумя различными генами и т.д. Кодирование осуществляется следующим образом: каждой аминокислоте соответствует комбинация трех нуклеотидов из четырех типов, составляющих ДНК. Из четырех различных нуклеотидов можно составить 64 комбинации по три нуклеотида: AAA, ААГ, АГА и т.д., где буквы соответствуют азотистым основаниям нуклеиновых кислот, изображенным на рис. 1. Каждый триплет кодирует одну аминокислоту, за исключением трех бессмысленных ("нонсенс") триплетов, которые обозначают окончание считывания кода. Таким образом, 20 аминокислотам соответствует 61 триплет, и следовательно, в генетическом коде большинству аминокислот соответствуют два или три триплета (см. табл. 1).
Таблица 1. Генетический код
Итак, генетическая информация каждого организма состоит из закодированной в его ДНК комбинации программ, которые и управляют синтезом большого числа ферментов и других белковых молекул. Этим основным положением обусловлены все другие особенности жизнедеятельности организма: его развитие, структура, тип обмена веществ и поведение, так как все они генетически предопределены. Таким образом, нуклеиновые кислоты и белки образуют сцепленную, взаимозависимую систему: синтез молекул обоих типов зависит от активности множества ферментов, для синтеза которых необходима информация, содержащаяся в ДНК. Именно в такой самоподдерживающейся генетической системе и закодированы все уникальные свойства живой материи.
Связь между генами и белками весьма непроста, но вполне понятна. Чтобы выжить, организм должен синтезировать великое множество разнообразных типов белков. Но белковые молекулы - это огромные и чрезвычайно упорядоченные структуры, которые построены из отдельных аминокислот, и если бы каждому организму приходилось заново выбирать, в какой последовательности соединить аминокислоты, чтобы наилучшим образом синтезировать необходимые белки, он бы не смог выжить. Поэтому информация - необходимое для жизни и незаменимое генетическое наследство - должна передаваться от родителей к потомкам. Если бы нужные последовательности аминокислот могли быть скопированы с уже существующих белковых молекул, то нуклеиновые кислоты оказались бы ненужными. Однако по своему строению белковые молекулы не годятся для копирования. В то же время последовательность нуклеотидов, образующих полинуклеотидные молекулы, может быть легко скопирована. Поэтому программы "сборки" белковых молекул закодированы в нуклеиновых кислотах, и именно они копируются в каждом поколении и передаются по наследству.
Разумеется, сами по себе белки и нуклеиновые кислоты еще не образуют организма. Чтобы ферменты могли синтезировать все новые молекулы нуклеиновых кислот, ферментов и других веществ, необходимых для построения организма, им нужно исходное сырье, а также источник энергии и растворитель. Растворитель (вода) фактически представляет собой основной компонент большинства живых существ. (Более подробно об источниках энергии и воде мы будем говорить дальше.) Имея в своем распоряжении исходное сырье, энергию и воду, генетическая система получает возможность сформировать организм, включая все те структуры, которые сами по себе лишены генетических свойств, например мембраны, окружающие каждую клетку.
Помимо этих основных условий для создания организма в генетической информации должна содержаться программа, определяющая порядок "работы". Ведь тысячи генов, в которых записана программа построения живой системы, не существуют все одновременно в активном состоянии. В ходе сложных стереотипных изменений, составляющих основу индивидуального развития организмов, особенно у многоклеточных растений и животных, различные гены активируются не одновременно и в разных клетках. Рассмотрим простой пример. Гемоглобин вырабатывают только определенные клетки организма, и гены, несущие информацию, необходимую для синтеза двух аминокислотных цепей, образующих этот белок, активны только в тех клетках, которые производят гемоглобин, хотя присутствуют во всех. Более того, гемоглобин, синтезируемый в клетках эмбриона млекопитающих, отличен от того, который синтезируется в клетках взрослых особей. Это означает, что разные гены гемоглобина вступают в действие на различных стадиях развития организма. Закономерности такого рода, присущие всем генам и клеткам организма, обеспечивают формирование отдельной особи - будь то животное или растение, - начиная с момента оплодотворения. Программа управления этим процессом генетически закодирована. Природа управляющих сигналов и различных механизмов, включаемых в ходе развития, еще не совсем понятна - это предмет многих современных биологических исследований.
Откуда же информация поступает в гены? Непосредственный источник ее гены родителей. Первичным же источником этой информации являются случайные мутации - произвольные изменения отдельных нуклеотидов, а иногда более значительные перестройки ДНК, отобранные и закрепленные в процессе естественного отбора. Мутантные гены реплицируются* так же, как и все другие, но при трансляции** они дают начало белкам с новой последовательностью аминокислот и новыми свойствами или вызывают образование измененных генетических программ развития. В большинстве случаев возникшие мутации либо вредны, либо бесполезны и поэтому отсеиваются в процессе естественного отбора. Однако иногда мутация приводит к синтезу нового полезного белка или изменению процесса индивидуального развития, что дает то или иное преимущество особи, обладающей им. Такая мутация сохраняется и распространяется благодаря естественному отбору, так как несущие ее особи оставляют в среднем больше потомства, чем не имеющие ее. В конце концов мутантный тип может стать доминирующим в популяции.
* (Репликация синтез дочерней молекулы на родительской, подобный получению реплики на матрице.- Прим. перев.)
** (Трансляция процесс, с помощью которого генетическая информация переводится из нуклеиновой кислоты в белок. Прим. перев.)
Возникновение у насекомых и клещей вновь приобретенной устойчивости к инсектицидам явление, наблюдаемое во всем мире,- объясняется именно такой эволюцией белка и последующим распространением новой формы. У некоторых видов насекомых синтезируется мутантная форма ацетил - холинэстеразы (фермента, необходимого для жизнедеятельности нервных клеток), которая нечувствительна к органическим фосфатам, специально предназначенным для ее уничтожения. Недавно у них возник новый мутантный фермент дегидрохлориназа, который разрушает ДДТ, что обеспечило устойчивость мух и москитов к этому химическому препарату. Вполне естественно, что новые белки создаются не только у насекомых, но и у бактерий, у которых устойчивость к антибиотикам вырабатывается настолько часто, что это ставит серьезные проблемы перед здравоохранением. Исследования показали, что инсектициды и антибиотики сами по себе не вызывают мутаций, приводящих к возникновению устойчивости. Очевидно, что подобные мутации присутствуют в популяциях, еще не подвергавшихся воздействию препаратов, однако там они встречаются довольно редко. Неоднократное воздействие токсического вещества уничтожает особей, чувствительных к этому веществу, тогда как устойчивые мутанты, размножаясь, приходят на смену исходному типу.
Приведенные примеры касаются случаев небольших эволюционных изменений, которые произошли сравнительно недавно. Вся же генетическая информация, заложенная в организмах того или иного вида, является результатом очень длительной истории таких изменений. Таким образом, всю совокупность генов можно рассматривать как "летопись" случаев полезных мутаций, идущую из далекого прошлого.
Теперь мы можем ответить на вопрос: "Что такое жизнь?". Характерным генетическим признаком живых существ является способность к саморепликации и мутациям, лежащая в основе эволюционного развития всех структур и функций, которыми и отличаются живые объекты от неживых. В таком случае на наш вопрос можно ответить примерно так: жизнь равнозначна наличию генетических свойств. Любая система, способная к свободным мутациям и их последующему воспроизведению, почти неизбежно должна развиваться по пути, обеспечивающему ее выживание. За свою долгую эволюцию она достигает той степени сложности, разнообразия и целесообразности в своем строении, которую и принято обозначать словом "живое". Таким образом, тот "творец", следы деятельности которого мы находим повсюду в живом мире, есть не что иное, как естественный отбор, влияющий на спонтанные мутации на протяжении длительного времени.
Взгляд на природу жизни в генетическом аспекте был впервые изложен одним из основателей современной генетики американским ученым Г. Дж. Мёллером (1890-1967), открывшим мутагенное воздействие рентгеновского излучения. Задолго до того, как была выяснена химическая природа генов и их связи с белками, Мёллер написал работу "Ген как основа жизни", которую представил на международном конгрессе, состоявшемся в 1926 г. В ней отмечалось, что в основе феномена жизни лежат саморепликация и мутабильность. Мы не можем здесь подробно излагать его тщательно аргументированные доводы, но приведем хотя бы небольшой отрывок из резюме статьи, где отражены логика и стиль автора.
Замечено, что процесс роста включает в сеоя механизм "специфического аутокатализа", без которого существование жизни невозможно. Известно, что ген, находясь в окружении протоплазмы, обладает подобным свойством. Еще более удивительно, что ген может мутировать, не теряя своей специфической аутокаталитической способности. Благодаря такому исключительному свойству его возможности превышают уровень, соответствующий простому функционированию, а это вызывает невероятные предположения, что любая другая часть протоплазмы независимо от гена также обладает аутокаталитической активностью, ибо в действительности "рост" остальной части протоплазмы, вероятно, следует рассматривать как побочный результат генной активности. Точно так же невероятно трудно предположить, что за аутокатализ ответственна основная часть простейшей живой материи, высокоорганизованного ("протоплазменного" по своей природе) вещества, связанного с геном. Следуя этой логике, приходим к выводу, что простые по своей структуре гены, по-видимому, и сформировали основу первичной живой материи. Возможность мутировать без потери способности к росту, присущая только живым организмам, позволила им эволюционировать в более сложные формы с образованием таких побочных продуктов, как протоплазма, сома и т.д., которые в наибольшей степени способствовали их выживаемости. Таким образом, вероятно, именно гены и составляют основу жизни.
Подобный генетический подход признается сейчас практически всеми учеными. Негенетические определения жизни обычно выглядят слишком расплывчатыми либо чересчур ограниченными. Например, если пользоваться ими, то кристаллы или пламя трудно исключить из разряда "живого". Ведь кристаллы обладают высокой степенью упорядочения и способностью к росту, так как зародыши кристаллизации могут воспроизводить самих себя. Пламя способно не только к росту и самовоспроизведению в виде искр благодаря активному "метаболизму" оно может поддерживаться.
Генетическое определение жизни позволяет нам сделать чрезвычайно важное заключение общего характера: поскольку все гены и белки построены из одних и тех же нуклеотидов и аминокислот, а генетический код (за небольшими исключениями) также универсален, все земные организмы в своей основе одинаковы. Несмотря на всю загадочность феномена жизни, на Земле существует только одна ее форма, и она должна была зародиться лишь однажды.
|